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Summary. Solute uptake in many cells is characterized by a se- 
ries of additive Michaelis-Menten functions. Several explana- 
tions for these kinetics have been advanced: unstirred layers, 
transport across more than one membrane, effects of solute con- 
centration on membrane potential, numerous carrier systems. 
Although each of these explanations might suffice for individual 
cases, none provides a comprehensive basis for interpretation of 
the kinetics. The most common mechanism of solute absorption 
involves cotransport of solute with a driver ion. A model is de- 
veloped in which solute and driver ion bind randomly to a mem- 
brane-bound carrier which provides a single transmembrane 
pathway for transport. The kinetic properties of the model are 
explored with particular reference to its capacity to generate 
additive Michaelian functions for initial rate measurements of 
isotopic solute influx. In accord with previous analysis of ordered 
binding models (Sanders, D., Hansen, U.-P., Gradmann, D., 
Slayman, C.L. (1984)J. Membrane Biol. 77:123), the conven- 
tional assumption that transmembrane transit rate-limits trans- 
port has not been applied. Random binding carriers can exhibit 
single or multiple Michaelian kinetics in response to changing 
substrate concentration. These kinetics include high affinity/low 
velocity and low affinity/high velocity phases (so-called "dual 
isotherms") which are commonly observed in plant cells. Other 
combinations of the Michaelis parameters can result in cis-(sub- 
strate) inhibition. Despite the generality of the random binding 
sgheme and the complexity of the underlying rate equation, a 
number of predictive and testable features emerge. If external 
driver ion concentration is saturating, single Michaelian func- 
tions always result and increasing internal substrate concentra- 
tion causes uncompetitive inhibition of transport. Numerical 
analysis of the model in conditions thought to resemble those in 
many experiments demonstrates that small relative differences in 
a few key component rate constants of the carrier reaction cycle 
are instrumental in generation of dual isotherms. The random 
binding model makes the important prediction that the contribu- 
tions of the two isotherms show opposing dependence on exter- 
nal concentration of driver ion as this approaches saturation. In 
the one case in which this dependence has been examined exper- 
imentally, the model provides a good description of the data. 
Charge translocation characteristics of the carrier can be deter- 
mined from steady-state kinetic data on the basis of the response 
of substrate flux to modulation of internal driver ion concentra- 
tion. The application of the model to dual isotherm kinetics is 
discussed in relation to "slip" models of cotransport, in which 
the carrier is assumed to have the capability to transport sub- 
strate alone or with the driver ion. A method for distinguishing 

between the two models is suggested on the basis of measure- 
ment of charge/solute transport stoichiometry as a function of 
external driver ion concentration. 
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dual isotherm �9 random binding - slip 

Introduction 

Solute uptake by a variety of plant cells and tissues 
does not obey simple Michaelis-Menten kinetics. 
Typically, influx begins to saturate as a function of 
increasing solute concentration if the solute concen- 
tration is maintained below about 100/xM. As the 
solute concentration is raised beyond this range, 
influx is further stimulated, and may even fail to 
saturate at concentrations as high as I00 mM (Ep- 
stein, 1976). Lineweaver-Burke plots of such data 
are concave-downward. 

Some early explanations for these complex ki- 
netics favored an interpretation based on transport 
across two membranes (plasma membrane and 
tonoplast) in series (Laties, 1969). However, con- 
cave-downward Lineweaver-Burke plots are also 
observed in evacuolate algae (Kannan, 1971), which 
suggests that the phenomenon is a property of the 
plasma membrane alone. These observations on 
unicellular algae (see also Komor & Tanner, 1975) 
and on suspension-cultured or isolated cells of 
higher plants (Mettler & Leonard, 1979; McDaniel, 
Lyons & Blackman, 1981; van Bel, Borstlap, van 
Pinxteren-Bazuine & Ammerlaan, 1982) also mili- 
tate against generalized interpretations which in- 
voke unstirred layers in the apoplast of multicellular 
higher plant tissue (Ehwald, Meshcheryakov & 
Kholodova, 1979). 

There have been many attempts to apply a 
mathematical formalism to the transport kinetic 
data from plants. Initial work suggested that the 
curvilinear Lineweaver-Burke plots might result 
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Fig. 1. (A) Reaction kinetic scheme for random binding of solute 
(S) and H + to carrier (X) catalyzing cotransport. Carrier is repre- 
sented as transporting positive charge in the loaded form (RB + 

model). (B) As A, but with loaded carrier neutral and charge 
transfer occurring on the unloaded form of the carrier (RB 
model). (C) Generalized reaction kinetic scheme for RB § and 
RB models. Concentration (density) of carrier state j is desig- 
nated Nj, with rate constants (not shown) from carrier state i to 
state j designated k~ 

from the operation of two discrete, but additive, 
saturable systems (Epstein, Rains & Elzam, 1963). 
More detailed curve fitting revealed that most data 
could not be described as the sum of two additive 
Michaelian processes (Nissen, 1974). Instead, it 
was proposed that kinetic data might be accounted 
for by the existence of as many as eight separate 
and nonadditive Michaelian "phases."  This sugges- 
tion provoked the formulation of a number of 
models to describe the underlying mechanism of 
transport (Bange, 1979; Sabater, 1982). However, 
in a comprehensive and rigorous study, Borstlap 
(1981, 1983) has shown for several solutes (organic 
and inorganic) that a markedly simpler algorithm 
suffices for fitting of all data so far examined. The 
algorithm comprises three additive phases: two Mi- 
chaelian and one linear. While it might reasonably 
be thought that the last of these phases is the result 
of "passive" diffusion (Borstlap, 1977, 1981), the 
origin of the other two is not so clear. 

The most common mechanism of solute uptake 
involves cotransport of the solute with one or more 
driver ions (Eddy, 1978; Poole, 1978; West, 1980; 
Sanders, 1984). Driver ion influx is thermodynami- 
cally downhill and therefore energies the accumula- 
tion of solute. Komor and Tanner (1974, 1975) used 
a reaction kinetic scheme for proton/hexose cotrans- 
port to explain the existence of two Michaelian 

phases for hexose uptake by Chlorella and the re- 
sponses of these phases and of the net hexose-de- 
pendent proton influx to changes in external pH. 
They proposed that the hexose carrier can cross the 
membrane in one of two loaded forms: with the 
hexose molecule alone (representing the lower af- 
finity phase), or fully loaded with the hexose and a 
hydrogen ion (higher affinity). Since the binary car- 
rier-solute complex is capable only of dissipative 
transport (with respect to the transmembrane elec- 
trochemical gradient of solute), dual pathway 
schemes like this have been termed "slip" models 
(Eddy, 1980). 

One limitation in applicability of the slip model, 
however, is that it does not account for the observa- 
tion that in some systems the Michaelian phase with 
the lower affinity can operate against the transmem- 
brane electrochemical gradient of solute (e.g. Ger- 
son & Poole, 1972; van Bel et al., 1982; Sanders, 
1984). The aim of the present paper is to explore the 
properties of an alternative (but extremely simple) 
reaction kinetic model for solute-driver ion cotrans- 
port in which the solute and a driver ion bind ran- 
domly to a carrier. The model allows only one 
transmembrane pathway for solute movement (that 
of the ternary driver ion/solute/carrier complex) and 
this means that solute transport can be energized by 
the driver ion gradient under all conditions. It is 
demonstrated that such models are capable of ex- 
plaining the two Michaelian phases of plant solute 
transport. Furthermore, the model is testable with 
respect to the dependence of transport on the exter- 
nal concentration of driver ion. Preliminary ac- 
counts of this work have appeared elsewhere 
(Sanders & Slayman, 1983; Sanders, 1984). 

The Model 

GENERAL DESCRIPTION AND ASSUMPTIONS 

Solute uptake is assumed to be mediated by a carrier (X) whose 
ligand binding sites are exposed alternately to the outside and 
inside of the cell. The carrier possesses binding sites for both the 
solute (S) and a driver ion (H+). Detailed consideration will be 
given only to the case in which H + and S are transported in a 
stoichiometric ratio of 1, though the model can easily be ex- 
tended to incorporate other ratios. Likewise, since the vast ma- 
jority of cotransport systems operate electrophoretically, trans- 
porting positive charge into the cell, treatment will focus on the 
simplest case in which S bears no net charge and the current is 
therefore carried by H +. 

It is further assumed that the carrier is able to traverse the 
membrane in one of only two states: either completely unloaded 
or fully loaded with S and H +. This simplification may be justi- 
fied on the grounds that significant permeability of intermediate 
states (XS,  XH +) would serve to uncouple the fluxes of the li- 
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gands and hence impair efficient energy transduction (Turner, 
1981). Furthermore, careful studies on the H+-monosaccharide 
cotransport system of Rhodotorula gracilis have failed to un- 
cover any catalytic activity of the partially-loaded carrier 
(Neimietz & H6fer, 1984). Results of relaxing this assumption 
are dealt with in the Discussion. The presence of only one 
charge-carrying pathway categorizes the transport system as 
"Class-I." Current-voltage relations of Class-I systems have 
been explored already by Hansen, Gradmann, Sanders and Slay- 
man (1981). 

S and H + are considered to bind randomly to X. In other 
words, the order of addition of S and H + will be statistically 
determined both by the reaction constants linking the different 
loaded states of the carrier and by the ligand concentrations. 
This constitutes an important deviation from our previous treat- 
ment of cotransport (Sanders, Hansen, Gradmann & Slayman, 
1984), which considered the properties of carriers that are steri- 
cally constrained such as to permit only one binding sequence of 
S and H +. For two ligands, four separate ordered-binding models 
have to be specified to accommodate the different permutations 
of binding order on the two sides of the membrane. The condi- 
tion of random binding therefore represents the more general 
case, since, given appropriate values of the ligand binding reac- 
tion constants, the single random binding model can effectively 
merge with any one of the four cases for ordered binding. The 
quid pro quo of this more comprehensive approach is the greater 
complexity of the resulting rate equations. 

Figure IA is a kinetic scheme depicting random binding of S 
and H + to the recycling carrier. Note that although the binding of 
either ligand to the carrier might be described by as many as four 
binding constants, it is envisaged that only one binding site need 
be involved. Thus two different binding constants could arise 
from the vectorial orientation of the binding site (inside or out- 
side the cell), and another two from the possible difference in 
affinity resulting from binding of the carrier to the other ligand. 
For this model (RB*), transfer of (positive) charge is represented 
as occurring on the loaded form of the carrier. The correspond- 
ing transport system in which (negative) charge is moved on the 
unloaded carrier ( R B ) ,  the loaded form being neutral, is shown 
in Fig. lB. Both RB + and RB models can be represented by the 
generalized scheme in Fig. 1C, in which the carrier state densi- 
ties are represented as N:. 

In accordance with previous nomenclature (Sanders et al., 
1984), reaction constants can, where appropriate, also be rewrit- 
ten to make ligand concentration explicit as, for example, k86 = 
k~6[S]o. The effect of membrane potential on the charge-transit 
reactions can be incorporated in the form of a symmetric 
Eyring barrier as 

kl2 = k~ exp(zu/2) (la) 

and 

k2l = k~ exp( - zu /2 )  (lb) 

for the R B -  model, in which z is the net charge on the carrier 
during transit, k~ and k2~ the respective backward and forward 
reaction constants at zero membrane potential, and u the re- 
duced membrane potential, defined as F A ~ / R T  (with AO the mea- 
sured membrane potential difference in volts referenced to the 
cell exterior, F, R, and T having their usual meanings). The 
corresponding equations for the RB model are 

Table 1. Partial expansion of the coefficients for the complete 
rate equation [Eq. (3)] 

Coefficient Expanded  f o rm  

A 
B 

C 
D 

E 
F 
G 

N "  k21[kls(k3v + k31) • k37k13) 
k~Jd86[(k62 + k68)12KA'~ + k6220KA~] 
k'~2(k62 + k68)52KA4 + k~6krz44KA8 
[k|5(k37 + k31) + k37k13][(k62 n- k68)(k2I + k24) 

+ kz6k68] + k12[(k37 + k30(kzg(k62 + k68) + k26k68] 
k~42k~865 2KA ~ ~ 
k]2172KA~r + k~e76KA} 
212KAr 

k87 = k8~ exp( - zu /2 )  (2a) 

for the backward direction, and 

k78 = k~ exp(zu/2) (2b) 

for the forward direction. 

ISOTOPE FLUXES 
THROUGH RANDOM BINDING SYSTEMS 

Schemes such as those in Fig. 1 can be treated as conventional 
enzymic reactions. Hence the formalism developed for descrip- 
tion of the kinetic behavior of enzymes can also be applied to 
random binding carriers in order to derive the complete rate 
equation describing isotopic flux through the systems. The rate 
equation is derived in Appendix I by the method of King and 
Airman (1956) and can be written in the form 

A[S]o(B[S]o + C) (3) 
Js = D(E[S]2o + F[S]0 + G) 

in which J, is the flux of isotopic S from outside to inside, [S]o is 
external concentration of S, and the coefficients A through G are 
constants from which [S]o has been extracted, but which be- 
tween them comprise various combinations of all the component 
reaction constants of the carrier cycle. Embedded within the 
coefficients, therefore, are the six reaction constants in which 
binding of ligands other than [S]o are subsumed (i.e., binding of 
[H+]o, [H+]i and [S]i). For ready reference, partial expansion of 
the coefficients in terms of the reaction constants is given in 
Table I. This expansion is, of course, equally valid for the RB § 
and RB models: it is merely the identity of the charge-carrying 
reactions (kl2, k21 versus k78, k87) which is model-dependent. 

Although the major conclusions of this paper can be readily 
comprehended without a detailed understanding of the methods 
used to derive the complete rate equation, a brief description of 
the King-Airman method will enable the meaning of some of the 
symbols in Table 1 to be more easily appreciated. The rate equa- 
tion is set up as a product of particular carrier-state densities 
(which are not known) and associated rate constants. The King- 
Altman method allows the concentration of any given carrier 
state (Nj where j can hold a value between 1 and 8: see Fig. 1) to 
be written solely in terms of the rate constants and N. For the 
kinetic diagrams in Fig. 1, N j / N  is given as the sum of 64 terms, 
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each term the product of seven different rate constants, while N 
is simply the sum of all eight N f s  (512 terms). Where Nj and N 
have been expressed as King-Airman functions, they will be de- 
noted as KAj and KAr, respectively. The KA terms of particular 
interest in the present case are those describing N4 and Ns--the 
carrier states which combine with external substrate. An integer 
prefixing the KA expressions will denote the number of additive 
terms each contains, since it is convenient to group terms ac- 
cording to common rate constants. Where this has been done and 
a common rate constant then extracted and written explicitly, an 
,,o,, suffix will be added, the number of .... " 's signifying the 
number of extractions. Examples will be seen in Table 1. In 
deriving Eq. (3), those rate constants subsuming [S]o (i.e., k42, 
ksr) have been extracted in this manner. Many of the other ex- 
plicit appearances of rate constants in the coefficients in Table 1 
(including the presence of all terms in D) result from the fact that 
the rate equation is modified to describe isotopic flux. 

SIMPLIFICATION OF THE RATE EQUATION 

It will be apparent that Eq. (3) is extremely unwieldy, containing 
no fewer than (512 • 21 =) 10,752 separate additive terms in the 
denominator. Much of the rest of this paper will be devoted to 
exploring its properties, which under some circumstances are 
surprisingly specific. 

Although much can be accomplished by numerical analysis 
of the rate equation, in order to understand its behavior in an 
analytic sense it becomes important to simplify it. One common 
method for simplification assumes that the transmembrane reac- 
tions of the carrier are rate limiting to the operation of the carrier 
cycle, i.e., that the ligand-binding reactions are in rapid equilib- 
rium (Schultz & Curran, 1970; Heinz, Geck & Wilbrandt, 1972; 
Page & West, 1981; Turner, 1981). However, as we have dis- 
cussed previously (Sanders et al., 1984), this procedure has se- 
vere limitations, since it imposes on the form of the rate equation 
a condition which does not appear to be physically realistic. The 
assumption of rapid equilibrium will therefore not be used here. 
(It should be noted that none of the qualitative conclusions em- 
erging from this work are compromised by imposing the more 
restrictive equilibrium binding assumption. This point can be 
confirmed directly by ignoring all terms in which any of the reac- 
tion constants kz2, k21, k78, k87 appear more than once.) 

An alternative and more reliable method of simplification is 
to analyze the behavior of the equation under conditions in 
which some of the reaction constants are eliminated by consider- 
ation of the prevailing experimental conditions. The particular 
conditions chosen for detailed analysis are: 

(i) [S]i = 0. In perfused giant algae (Sanders & Hansen, 
1981) and in membrane vesicle systems (not yet operational for 
assay of cotransport systems in plants, though well developed 
for the assay of transport in bacterial and animal systems) it is 
clearly easy to fix [S]i to 0. However, in intact cells transport is 
frequently measured after a period of starvation of the solute in 
question, in order to derepress (Pall, 1971) or otherwise activate 
(Sanders, 1980) the transport system. Since this treatment often 
reduces [S]~ considerably, it appears reasonable under some cir- 
cumstances to assume that iS ]~ approaches zero for an initial rate 
measurement in vivo. This has the effect of reducing k73 and ks~ to 
0, and hence eliminating all terms which contain these two reac- 
tion constants. 

(ii) AO negative and saturating. To date, current-voltage (I- 
V) curves have been described for three H+/organic solute co- 
transport systems: glucose and amino acids in Neurospora (Han- 
sen & Slayman, 1978; Sanders et al., 1983) and amino acids in 

Riccia (Felle, 1981). For each, the I-V relation within the mea- 
surable range recorded within seconds of the introduction of the 
solute lies parallel to the voltage axis, but somewhat negative to 
it. In order words, despite the fact that the cotransport systems 
carry current, they are all voltage-insensitive. This implies that 
the voltage-sensitive charge-carrying reactions are not rate limit- 
ing to the inwardly directed transport cycle, and thus that only 
terms containing k2~ (RB + model) or k78 (RB- model) need be 
considered. [The H+/K + cotransport system of Neurospora, 
which displays a finite conductance during initial rate measure- 
ments (M.R. Blatt, personal communication) may well be an 
exception to this trend, since high [K+], confers on the system a 
rather negative reversal potential around which voltage sensitiv- 
ity can be anticipated.] 

Applying both the above simplifying conditions results in a 
rate equation whose behavior is more readily understood. For 
example, the 10,752 terms in the denominator of Eq. (3) reduce 
to 92 terms in the RB + model after joint application of conditions 
i and ii and appropriate cancelling of common terms in numerator 
and denominator, Furthermore, the experimental justification of- 
fered above indicates that numerical analysis of the simplified 
rate equation is more likely to approximate to the empirical situa- 
tion than necessary numerical assumptions (however simple) 
concerning the full rate equation. It is important to note, how- 
ever, that although the identities of the coefficients A through G 
change after simplification (see Tables 3 and 4), the overall form 
of the rate equation is identical with that in Eq. (3). 

Results 

I. BEHAVIOR OF THE COMPLETE RATE EQUATION 

A. The Comple te  Ra te  Equat ion  Predicts  
Two Addi t ive  Michae l i s -Menten  Funct ions  

I f  u p t a k e  o f  S c a n  b e  d e s c r i b e d  as  t h e  s u m  o f  t w o  

a p p a r e n t l y  i n d e p e n d e n t  M i c h a e l i a n  p r o c e s s e s ,  w e  
c a n  w r i t e  

Jnlax ] 
Js = [S],,[K], + iS],, + " (4) K,,, + iS], ,  

in w h i c h  t h e  s u p e r s c r i p t s  1 a n d  II  d e f i n e  t h e  t w o  

p h a s e s ,  e a c h  o f  w h i c h  is c h a r a c t e r i z e d  b y  a s a t u r a t -  

ing  v e l o c i t y ,  Jmax, a n d  a M i c h a e l i s  c o n s t a n t ,  Km. 
R e a r r a n g i n g  E q .  (4) 

Jm,~,,)[S]. + Jm.~K,. + 
�9 + (K,. .  + K , . ) [ S ] , ,  + K,, .K,, ,  

(5) 

E q u a t i o n  (3),  w h i c h  r e l a t e s  f lux  o f  i s o t o p e  to  [S]o in  

t h e  r a n d o m  b i n d i n g  m o d e l s  1A a n d  B ,  c a n  b e  r e w r i t -  

t e n  in  a n  i d e n t i c a l  f o r m  to  E q .  (5) a s  

Js= [S]o b-~ [sI~ +-DE 
F " (6) 

[S]2o + ~ [S]o + 
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Thus, if H + and S bind randomly to a carrier which 
mediates cotransport, the kinetics of influx of iso- 
topic S with respect to [S]o can be anticipated as 
representing the sum of two Michaelis-Menten pro- 
cesses. This point has long been recognized by en- 
zyme kineticists for bi-substrate reactions and has 
more recently been pointed out in the context of 
transport by Kotyk (1983). Term-by-term compari- 
son of Eq. (6) with Eq. (5) enables the identities of 
the four Michaelian parameters to be specified in 
relation to the coefficients A through G as 

11 A B  
Jtmax + J m a x  - -  

D E  

1~ Ku  + i n  K~ _ A C  
ornax*~ m omax*~ rn D E  

F 
+ = - 

E 

G 

Equations (7) through (10) can be solved simulta- 
neously to yield specific and exact relationships be- 
tween the Michaelian parameters and the coeffi- 
cients: 

tween 10 and 500 (Borstlap, 1983). The Jmax'S di- 
verge by a smaller factor of between I. 1 and 20, but 
in all cases analyzed by Borstlap, the lower Jmax is 
associated with the lower value of K .... Thus, the 
kinetics can be resolved into two clearly-defined 
Michaelian phases. For these cases, then, we can 
define K~ > K~m, and the cumbersome exact solu- 
tions [Eqs. (11) through (14)] of Eqs. (7) through 
(10) can be replaced by 

= - -  G ( 1 5 )  

F 

F 
(7) K~ E (16) 

(8) J~m,x - A ( C F  - BG) 
O(F 2 - E G )  (17) 

(9) j~,x = A F ( B F  - CE) 
D E ( F  2 - EG)" (18) 

(i0) 
Thus, from the exact solutions [Eqs. (11)-(14)], 

the condition K~ > K~ implies F 2 > 4EG, and the 
condition J~ax > Jlmax implies B F  > 2CE. Equations 
(17) and (18) can then be replaced by even simpler 
functions derived from Eqs. (13) and (14): 

= F - V F 2  _ 4 E G  

2E (11) 

K ~  = F +  ~ /F  2 - 4EG 
2E (12) 

[2CE - B(F - ~ / F  2 - 4EG) 

2 D ~ F  2 --- 4EG J (13) 
Jinx 

u [ - 2 C E  + B(F  + ~ /F  2 - 4 E G ) ]  
Jmax = a [  ] (14) 

2DE~ / F  2 7 - ~ G  

B. Size-Ordering o f  the Multipliers Determines the 
Kinetic Behavior o f  the Complete Rate  Equation 

So far, no reference has been made to the relative 
values of the four Michaelian parameters, which 
will, of course, determine the specific shape of the 
influx isotherm. The complete rate equation is ex- 
tremely versatile in its behavior, and three specific 
responses are considered here. 

1. Discrete High Affinity~Low Velocity and Low Af- 
f ini ty/High Velocity Sys t ems  ("Dual I so therm"  ), In 
a vast array of plant cells and tissues, and for a 
similarly impressive spectrum of solutes, biphasic 
kinetics of solute uptake conforms to a simple pat- 
tern, popularly referred to as a "dual isotherm" 
(Epstein, 1976). Typically, the values of Km are 
widely disparate, being separated by a factor of be- 

A C  
J~ma• - D F  (19) 

J~ax - A ( B F  - CE) 
D E F  (20) 

A numerical example of a dual isotherm is de- 
picted in Figs. 2 and 3 (solid lines). 

2. Single Michael is -Menten Function. In some 
conditions, the rate equation, despite being essen- 
tially biphasic in character, will describe only a sin- 
gle Michaelis-Menten function. Several situations 
can be envisaged: 

(i) If (G/E) = (C2/B 2) and B F  = 2CE, then Eq. 
(6) becomes a single Michaelis-Menten function 
with Jmax = (AB/DE) and Km = (C/B). These condi- 
tions characterize the situation for K~ = K~, as can 
readily be seen by substitution into Eqs. (7) through 
(10). [Another, trivial, condition for which K~,, = 
KI], is F 2 = 4EG (see Eqs. (I 1) and (12)), though in 

II this case J ~ x  + Jm~x = 0.] 
(ii) If G = [C(BF - CE)]/B 2, the reduction of 

Eq. (6) to a Michaelian form results in Jm,x = (AB/ 
DE)  and Km = (BF - CE)/BE = (BG/CE). This 
result can again be derived from Eqs. (7) through 
(10) by setting one of the Jmaxs = 0. The effect is 
modelled in Figs. 2 and 3 (dashed lines). 

(iii) If C and F >> B and E, the complete rate 
equation can behave like a single Michaelis-Menten 
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Fig. 2. Three different responses of the generalized rate equation 
for a random binding carrier [Eq. (3)] to variation of [S],. Note 
scale change for [S]o > 0.5. Solid line ( ): dual isotherm kinet- 
ics with K~ >> K~ and J~• > JIm~. Values of coefficients: A = 1, 
B = 5, C = 10, D = 1, E = 10, F = I00, G = 10, resulting in the 
following values tbr the Michaelis parameters [Eqs. (11)-(14) 
and Table 2]: KI,~, = 0.10, K,I~ = 9.90 (approximate value from 
Table 2 is 10), J ~  = 0.10, J~• = 0.40. Dashed line ( . . . .  ): 
Michaelis-Menten kinetics, with K~ = K~, based on condition 
(ii) in Table 2. Values of coefficients: as for dual isotherm, except 
G = 160, resulting in the following values for Michaelis parame- 
ters [from Eqs. (11)-(14) and Table 2]: Km = 8.0, Jm~ = 0.5. 
Dotted line ( ...... ): cis-inhibition kinetics, with K~ >> Ktm, JInJaa x 
negative. Values of coefficients: as for dual isotherm, except B = 
0.5, resulting in values for Michaelis parameters [from Eqs. (11)- 
(14) and Table 2]: K~ = 0.1, KI~ = 9.90, J~,~ = 0.1, J~,~ = -0.05 

funct ion over  a large range o f  [S],, because  the [S]~ 
terms remain  insignificant. Exper imenta l ly ,  this 
means  that  one  o f  the two values o f  K,, is so high as 
to be unobservab le .  For  that  case ,  the obse rved  K,, 
is given simply as (G/F). The two values o f  Jma~, [see 
Eqs.  (7) th rough  (9)] r educe  to (AC/DF) and (A[BF 
- CE]/DEF). The latter Jm~x, which  will be associ-  
a ted  with the ve ry  high value o f  K~ ,  reduces  to 0 
with BF = CE, so the funct ion then truly describes 
only a single i so therm.  As will be shown later, this 
is an ex t remely  impor tan t  condi t ion which  may  reli- 
ably be  manipula ted  in exper iments .  

3. Cis-Inhibition by S. I f  the Jmax associa ted  with 
the higher  value o f  K,, ig negative,  flux will tend to 
dec rease  as a funct ion  o f  [S]o over  a cer tain range 
(which will be de te rmined  by the separat ion o f  the 
Km'S). As a specific and simple example,  consider  
the case  in which  F 2 >> 4EG (i.e., Km's are clearly 
separated) ,  then,  as in case i above ,  the Michael ian 
pa ramete r s  are given by  Eqs.  (15), (16), (19) and 
(20). Jlmlax will be negat ive when  CE > BF. The asso- 
ciat ion o f  the  negat ive Jmax with the higher value of  
Km (either E or  G or  bo th  mus t  be m u c h  smaller than 
F,  thus K n mus t  be greater  than KIm), ensures  that  
the response  to flux to [S]o passes  through a clear 
m a x i m u m  (Figs. 2 and 3, dot ted  lines). 

A less ex t reme  example  o f  cis-inhibition than 

301 / 
,ol !i' �9 

7 i / . . . .  " 

L _ _  
0 5 10 

Es?;' 
Fig. 3. Double reciprocal plots of the kinetic responses shown in 
Fig. 2. Solid line ( ), dual isotherm; dashed line ( . . . .  ), Mi- 
chaelis-Menten kinetics; dotted line ( ...... ), cis-inhibition 

that  shown in Fig. 2 occurs  if fluxes in the low con- 
cent ra t ion  range are higher than predic ted f rom Mi- 
chaelis fits o f  data  at high concent ra t ion .  These  
character is t ics  result  if l~ Jmax is only slightly nega- 
tive. Such  kinetics have been obse rved  for  sulfate 
t ranspor t  in the alga Hydrodictyon (Rybovfi ,  
Negpiirkovfi ,  Janfi~ek & Stru2insks~, 1982). 

The above  discuss ion is summar ized  in Table  2. 

C. At Saturating [H+],, 
the Complete Rate Equation Always Predicts 
a Single Michaelis-Menten Function 

A central  f ac to r  in the charac ter iza t ion  of  the ki- 
netic behav io r  o f  the model  conce rns  the response  
to exper imenta l  variables,  since this will genera te  a 
f r a m e w o r k  by  which  its validity might  be tested. 
Al though the relat ionships  der ived thus far  are use- 
ful in demons t ra t ing  the versati l i ty of  the comple te  
rate equat ion,  they  give little informat ion on the 
kinetic r e sponse  to changes  in ligand concent ra t ion  
(other  than  IS]o) because  the rate cons tan ts  are 
present  in a large number  of  terms subsumed in 
each  of  the critical coefficients.  [The coefficients A 
and D are relat ively simple but  have no determinant  
role in the general ized kinetic response  (see Table  
2) since they  act  only  as scaling factors  for  the nu- 
mera to r  and denomina to r  o f  the rate equation.]  

[H+]o is, o f  course ,  one  fac tor  which  is easy  to 
manipula te  exper imental ly .  It  enters  the overall  rate 
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Table 2. Size ordering of the coefficients in the complete rate equation and generalized kinetic re- 
sponse 

73 

Response Condition Kt~, K ~  J~ax J~a• 

Dual isotherm F 2 >> 4EG;  B F  > 2 C E  G / F  F / E  A C / D F  

Michaelis-Menten (i) G / E  = C2/B2; B F  = 2 C E  C/B - -  A B / D E  

(ii) G = ( C [ B F  - CE]) /B  2 B G / C E  - -  A B / D E  

(iii) C,  F >> B,  E; B F  = C E  G / F  - -  A C / D F  

Cis - inh ib i t ion  F 2 >> 4EG;  C E  > B F  G / F  F / E  A C / D F  

( A [ B F -  C E ] ) / D E F  

( A [ B F  C E ] ) / D E F  

equation embedded in the rate constants k84 and k62. 
An important question which can be asked now is: 
how does saturating [H§ affect the kinetics pre- 
dicted by Eq. (3)? ("Saturating [H+]o '' is taken to 
mean that further increases in [H+]o have no further 
effect on transport: other reactions in the kinetic 
cycle must therefore be rate limiting.) The coeffi- 
cients can be simplified by expressing each only as a 
function of those terms in which [H+]o is raised to 
the highest power. They are written below with all 
forward rate constants for external ligand binding 
explicit: 

A = N "  k21[k15(k37 + k31) + k37k13] (21) 
rI_I+12Lo ho LO Lo ~ l ' )  liT A oo B = t~, /o~42/t86r%2r~62t . . . . .  4 + 4KA~ ~ (22) 

C + 3 o o o oo = [H ]ok~2ks4k62k62[16KA4 ] (23) 

D = [H+]ok~2{[k2j + k24][kls(k37 + k31) 

+ k37k13] + k12k24(k37 + k31)} (24) 
+ o o o ooo E = [H ]ok4flcs6k6~[36KAT ] (25) 

[L1+12 Lo Lo I,O f2g, L,~AOOO F = t,,  lott42~84m621 . . . . .  T ] (26) 
a + 2 O O OO = [H ],,k84k62[16KAT ]. (27) 

Since [H+]o~4 is not present in either of the coeffi- 
cients B or E, these terms exhibit a smaller power 
dependence on [H+]o than C and F. The former 
terms therefore make only a negligible contribution 
to the numerator and denominator, respectively, of 
the full rate equation. Furthermore, as shown in 
Appendix II, BF = CE: after extraction of the for- 
ward rate constants for So- and Ho+-binding, the 
KA ~176 terms in B are identical with those in C, and 
those in E identical with those in F. Thus, at satu- 
rating [H+]o, the complete rate equation obeys the 
size ordering of coefficients necessary for a simple 
Michaelis-Menten response (see Table 2, middle 
row, example iii). Regardless of any detailed varia- 
tion in the size of the carrier reaction constants, a 
cotransport system which binds H § and S randomly 
will always exhibit Michaelis-Menten kinetics with 
respect to S if [H+]o is saturating. 

This conclusion can also be reached in a non- 
quantitative manner by considering the nature of 
random binding, which is essentially a statistical 

process. As [H+]o is raised, the likelihood that H + 
will bind to the carrier before S progressively in- 
creases: thus, at saturating [H+]o, the probability 
that S will bind last becomes 1 and ligand binding at 
the external surface is ordered in a statistical 
(though not in a mechanistic) sense. 

D. At  Saturating [H+],,, Increase in [S]i 
Inhibits Flux Uncompetitively 

In some circumstances, it may be possible to ex- 
plore the effects of internal ligand concentration on 
the kinetics of transport (Sanders & Hansen, 1981). 
In the previous general treatment of the kinetics of 
ordered binding cotransport systems, it was 
stressed that such experiments are unlikely to yield 
much information on the underlying characteristics 
of the transport system unless conditions are fixed 
to simplify the complete rate equation. The same 
principle holds also for random binding systems: 
the complete rate equation predicts that raising 
[H+]/or [S]i can result in competitive, noncompeti- 
tive or uncompetitive inhibition of transport. How- 
ever, under the mathematically more restricted-- 
but experimentally attainable--conditions of 
saturating [H+]o a different picture emerges. 

For saturating [H+]o, Jmax can, as discussed 
above, be written as AC/DF and Km as G/F, with the 
gross rate constants defined as in Eqs. (3), (21)-(27) 
and Appendix II. Hence, the ratio Jm~x/Km can be 
described as AC/DG. Since the KA ~176 terms in Eqs. 
(23) and (27) are identical (Appendix II), we can 
write 

Jmax N "  k~2k21[kis(k37 + k31) + k37k13] 
(28) 

gm [k21 + k24][kls(k37 + k31) + k37k13] + ki2k24(k37 + k31)" 

This relationship is remarkable in being indepen- 
dent of the reaction constants k73 and k51 which sub- 
sume [S]i. Thus, although Km and Jm~x might each 
be sensitive to variation of [S]i (C, F and G all con- 
tain terms exhibiting first- and second-order depen- 
dence on [S]i--see Appendix II) the ratio between 
them is fixed. Lineweaver-Burke plots at different 
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Table 3. Complete expansion of the coefficients [Eq. (3)] for the 
R B  + model: At) negative, saturating and [S]i = 0 

A N " k57k780t 
g k~42k~6k62 
C k~zk84(k62 + k68) + k~6k62k48 
D 1 

E k~2k~6[ay + k62k78fl] 
F k~2[k62 + k68]{o~[(k75 + k57)(k87 + k84) -~- k57k78] + k78k84fl} 

+ k~6k48[aT + k62k78fl] 
G t~[k62 + k68][k57k78(k84 + k48) + k48k87(k75 + k57)] 
with 
Ot kts(k37 + k31 ) + k13k37 
fl (k15 q- k57)(k31 q- k37) + k13k57 
"y k57(k62 + k78) + k62k75 

[S]; must be parallel if [S]; has an effect on the flux 
in these conditions. Thus, if the action of raised [S ]~. 
is to inhibit isotopic influx, [S]i can behave only as 
an uncompetitive inhibitor of isotopic transport of S 
through a random binding cotransport system at sat- 
urating [H+]o. (If rate limitation of transport occurs 
through carrier recycling and exchange diffusion is 
the primary mode of  entry of *S, then S; will stimu- 
late the flux, but again only through parallel effects 
on Jm~ and Kin.) Since random binding becomes 
operationally ordered at saturating [H+L, it must be 
expected that models constrained at the outset to 
the external binding order H + then S should also 
exhibit uncompeti t ive kinetics with respect to [S]z. 
This, indeed, is the case, demonstrated by Eqs. (27) 
and (28) in Sanders et al. (1984). 

In contrast  to the specific effects of [S]i at satu- 
rating [H+]o, variation of [H+]~ can result in a vari- 
ety of  different classes of kinetic inhibition unless 
membrane potential is also saturating in the RB + 
model (in which case uncompeti t ive inhibition is 
again observed).  This can be appreciated with refer- 
ence to Eq. (28): H~k~l is present in the ratio Jm~x/ 
Kin, and has the capacity to decrease this ratio. If 
k21 is dominant (/x~b very negative) H~k~-containing 
terms in numerator  and denominator cancel. The 
discrimination between the effects of S~ and t-I[ 
might appear surprising at first, since the random 
binding model looks symmetric for all ligands. 
However ,  it has to be recalled that the complete 
rate equation describes influx of isotopic S, and it is 
the conversion of  the King-Altman equation to ex- 
press this fact that introduces nonequivalent re- 
sponses of flux to the two ligands (see Appendix I). 

I I .  R E A L I S T I C  BIOLOGICAL S I M P L I F I C A T I O N  OF 

THE C O M P L E T E  R A T E  E Q U A T I O N :  A t ~  

S A T U R A T I N G  AND [S] i  = 0 

The aim of exploring the properties of simplified 
models is twofold. First, since the prevailing practi- 
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Fig. 4. Specific numerical example of cis-inhibition for RB" 
model, with IS], = 0 and At) very negative. Note scale change for 
[S]o > 1. Rate constants were all set to unity except k62 = 0.05; 
coefficients in Table 3 were then calculated and these substituted 
into Eq. (3). Values of Michaelis parameters, from Eqs. (11)-(14) 
(with approximate values from definitions in Table 2 in brackets): 
g~m = 0.51 (0.51), g~ = 6.92 (6.97), J~m~• = 0.13 (0.14), J~ax = 
-0.09 (-0.10) 

cal conditions often approximate to saturating ~q, 
and [S]i = 0, it is necessary to ensure that the result- 
ing mathematical simplification does not restrict the 
random binding model from exhibiting some of its 
important  properties outlined above. Second, if it 
can be shown that the properties of the model do 
not change considerably after imposition of the 
more realistic conditions, the simpler expansions of 
the coefficients A through G enable critical rate con- 
stants to be identified as controlling the overall ki- 
netic response of  the transport  system. Justification 
of the choice of these particular simplyfing condi- 
tions is given in the " M o d e l "  section. The condi- 
tion that A+ is saturating necessitates that we distin- 
guish between the RB + and R B -  models, since the 
dominant rate constant in the former case is k2~, and 
in the latter it is k78. 

A. RB + Model  

1. Algebraic Derivation o f  a Rate Equation. For 
the experimental  conditions in which 2xt~ is very 
negative and [S]i = 0, k12, k73 and ks~ can all be set to 
0. The coefficients in Eq. (3) can then be simplified 
considerably. After factorization and cancelling of 
common terms in numerator  and denominator,  the 
coefficients are described explicitly in terms of the 
component  rate constants as in Table 3. 

2. Numerical  Modelling. In the following examples 
of  numerical modelling, all rate constants are set to 
unity wherever  possible in order to highlight those 
reaction constants which are instrumental in dic- 
tating a particular kinetic response. This strategy is 
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Fig. 5. Specific numerical  example of dual isotherm for RB-  
model  wi~b [S]i = 0 and A+ very negative. Note scale change for 
[S]o > 0.5. Rate cons tan ts  were all set to unity except  k68 = k~6 = 
k84 = /';4g = 0.1; coefficients in Table 3 were then calculated 
and these subst i tuted into Eq. (3). Values of  Michaelis parame- 
ters, from Eqs. (11)-(14) (with approximate  values from defini- 
tions in "Fable 2 in brackets): KI,, = 0.119 (0.117), K,I,I = 7.95 
(8.07), J~,,,x = 0.030 (0.029), J ~  = 0.185 (0.185) 

legitimate because the relative, not the absolute, 
values of the rate constants are the determinant fea- 
tures of the response. 

a. Cis-inhibition. The prime condition for cis- 
inhibition (Table 2) is CE > BF. Inspection of Table 
3 reveals that B can be made very small by setting 
k62 to a low value: the other relevant coefficients all 
contain k62-independent terms and remain large by 
contrast. The effect is modelled in Fig. 4 for k62 = 
0.05. This condition implies that at low IS]o, exter- 
nal binding is predominantly in the order H+-S, 
while at higher [S]o, S tends to bind first, but trans- 
port is impeded by slow binding of H + after S. 

b. Numerical  conditions for  dual isotherms. 
For K~ >> K~m, Table 2 shows that F 2 >> 4EG, and 
for JlmIax > J m a x ,  BF > 2CE. How can these relation- 
ships between the coefficients be obtained with re- 
spect to the relative values of the component rate 
constants? One simple case in which these condi- 
tions are fulfilled is illustrated in Fig. 5. There, the 
non-unity rate constants a r e  k68 = k~6 = k84 = k48 = 

0.1, which gives F 2 = 127, 4GE = 7.4 and BF = 
1.13, 2CE = 0.34, for unity ligand concentrations. 
This case can be viewed as one of effective positive 
cooperativity of the transport system: binding of the 
first ion is not favored, but, once bound, the binding 
of the second ion is faster. Note, however, that the 
dissociation constants for both ions, whether bind- 
ing first or second, are identical. The general sim- 
plicity of this case shows that no implausibly com- 
plex relations between the individual rate constants 
need be proposed in order for dual isotherm kinetics 
to occur. 

-1,5 -1.0 -0.5 
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Fig. 6. Response  of  the coefficients to variation of  [H+]o for RB + 
model  exhibiting dual i sotherm kinetics. Multipliers are defined 
as in Table 3 for the simplifying condit ions [S ]i = 0 and AO very 
negative. Values for all rate cons tan ts  as in Fig. 5. Terms A and 
D are both [H+]o-insensitive, and are not shown.  Reference 
value of [H+]o = 1, where  k84 = 0.1 and k62 = 1.0 (as  Fig. 5) 

c. Response  o f  dual isotherm model to change 
in [H+]o. Algebraic relations can easily be derived 
for the Jma• and Km's by combining the explicit 
relations in Table 3 with the complete definitions for 
the Michaelis parameters [Eqs. (11)-(14)]. How- 
ever, since our purpose here is primarily to examine 
the feasibility of a random binding explanation for 
dual isotherms, the response of the specific example 
shown in Fig. 5 to change in [H+]o will be modelled 
numerically. 

Figure 6 shows the response of the coefficients 
A through G (Table 3) to change in [H+]o, which is 
subsumed in k84 and k62. Inspection of Table 3 re- 
veals that A and D are [H+]o-insensitive, while B is 
linearly dependent on [H+]o. E contains zero- and 
first-order terms for [H+]o and therefore tends to 
linear dependence at high [H+]o. C, F and G all 
contain both first- and second-order terms, with 
zero-order terms additionally present in F and G. 
Thus slopes for C vary between ! and 2, and for F 
and G between 0 and 2 for low and high [H+]o, 
respectively. 

The resultant effects of [H+]o on the Michaelis 
parameters for dual isotherm behavior are shown in 
Fig. 7. (Note that Figs. 5-8 are modelled for the 
standard reference condition [H+]o = 1, with k~4 = 
0. I and k~2 = 1.) As [H+]o is raised, J~a• is seen to 
decrease and K~ to increase, confirming the predic- 
tions of the algebraic analysis of the full model (sec- 
tion IC) in generating a single Michaelis-Menten 
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Fig. 7. Effect of  [H+]o on Michaelis parameters for dual isotherm 
kinetics: RB + model. Reference conditions are those of Figs. 5 
and 6, with [H+]o = 1 (k~4 = 0.1, k~2 = 1.0) and absolute values of 
rate constants and the Michaelis parameters at [H+],, = 1 as in 
the legend of Fig. 5. Michaelis parameters calculated for each 
[H+]o after evaluation of the coefficients in Table 3 and substitu- 
tion of  the coefficients into Eqs. (11)-(14). [Since K~'s  are well 
separated at all [H§ approximate definitions of Michaelis pa- 
rameters (Eqs. (15), (16), (19), (20) and Table 2) are accurate to 
within 3% for the whole range of [H+]o] 

function determined by t Jmax and Km. Above the 
reference [H+]o, JXma• and K I both increase, though 
there is activation of the flux at all IS ]o because JImax 
is more sensitive than K I .  Below the reference 
[H+]o, JImax and J~ax both tend to linear dependence 
on [H+]o, with the Km's becoming insensitive as E, 
F and G all approach [H+]o independence. Dual iso- 
therm kinetics are still observed in this low range of 
[H+]o, with the separation of Jmax'S becoming more 
marked, and of K,,,'s less marked, than at the refer- 
ence [H+]o. 

The dependence on [H+]o of the overall 
Jmax(~Jmax I = Jmax -}- Jlmlax) is shown in Fig. 8. The 
decline in JImlax a t  high [H+]o is largely compensated 
for by a corresponding increase in j i  . Thus, 2Jmax 
increases only 25% as [H+]o is raised 50-fold from 
the reference [H+]o. (The corresponding increase in 
j i  is almost eightfold, and the decrease in n Jmax,  
fivefold.] This relative insensitivity of Y'Jm~x to [H+]o 
in the presence of a change in the relative domi- 
nance of the two Michaelean phases can be under- 
stood as a simple switch in effective binding order 
of H+o and So, with transport rate-limited primar- 
ily by other factors in the carrier reaction cycle. 
Below the reference [H+]o, the flux at very high 

~ f gJ m.x 
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-1.5 ~ lOg [H+] 0 - 1 . 0  -0.5/~ -0.4 0.5 1.0 
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Fig. 8. Response of the isotopic solute flux at saturating [S],, to 
variation in [H+]o for dual isotherm kinetics: RB + model. •Jma• 

1 II calculated as Jmax + Jmax from Fig. 7. All conditions as in Fig. 7 

[S],, tends towards linear dependence on [H+],, 
(Fig. 8), since, of course, JImax and I1 Jmax both exhibit 
linear dependence over this range of [H+]o (Fig. 7). 

The dependence of s215 on [H+]o is, in fact, 
itself Michaelean and can be written as 

Jstim[H+]o 
s -- Ksti m + [H+],. (29) 

This is a general condition for the simplified RB + 
model (though not for the complete model). Since 
~Jmax is defined by Eq. (7) as ABIDE, it can easily 
be shown from the definitions in Table 3 that 

No~k57k78 
Jstim = c~(k57 + k75) + /3k78 (30) 

and 

olk57k78 
Kstim = k~2[o~(k57 + k75) + /3k78]" (31) 

For the example in Fig. 8 (with k~2 = 1), both Jstim 

and Kstim have the value 0.273. 

d. Response of dual isotherm model to change 
in [H+];. As with the effects of [H+]o, the coeffi- 
cients in Table 3 can be rearranged to show explic- 
itly their behavior with respect to variation of [H+]i, 
which is subsumed in the reaction constants k31 and 
k75. The coefficients B, C and D are all independent 
of [H+]i, A contains only zero- and first-order 
terms, while E, F and G all contain zero-, first- and 
second-order terms. Thus, for dual isotherm condi- 
tions, Eqs. (15) and (16) predict that variation of 
[H+]; at high [H+]/will have no effect either on K~m 
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Fig. 9. Effect of [H']g on Michaelis parameters for dual isotherm 
kinetics: RB + model. Reference conditions are those of Fig. 5, 
with [H+!~ = 1 (kv5 = k3t = 1.0) and absolute values of rate 
constants and the Michaelis parameters at [H-]g = 1 as in the 
legend of  Fig. 5. Michaelis parameters calculated for each [H*], 
after evaluation of  the coefficients in Table 3 and substitution of  
the coefficients into Eqs. (11)-(14). [Since K~'s  are well sepa- 
rated at all [H+]~, approximate definitions of  Michaelis parame- 
ters (Eqs, (15), (16), (19), (20) and Table 2) are accurate to within 
3% for the whole range of  [H+]o] 

or K~l,. On the other hand, Jlmax and n Jmax should 
both exhibit reciprocal decline as [H+]/is raised [see 
Eqs. (19) and (20)]. In other words, [H+]i will be- 
have as a noncompetitve inhibitor if [H+]~ is already 
high and rate-limiting for transport. A similar con- 
clusion can be derived for the behavior of ordered 
binding models in which substrate dissociation on 
the inside occurs before H + dissociation (see Eqs. 
(A13) and (AI6) in Sanders et al., 1984), but the 
conclusion does not hold for converse orders of dis- 
sociation internally. The random binding model be- 
haves as though dissociation order of S and H+ in- 
side were constrained because at high [H+]~ and 
[S]~ = 0, the only source of carrier for combination 
with t-I/is that which is not bound to S. The effect is 
analogous to the behavior of the random binding 
model at high [H+]o, where binding also appears to 
be ordered. 

Clearly, however, this noncompetitive inhibi- 
tion by H + can be guaranteed to occur only if H + 
terms dominate in the expressions for the K,~'s and 
Jmax'S- If [H+]~ is not high, the pattern of inhibition 
is less well defined. Nevertheless, as shown for the 
complete model in Section ID, HI will behave as an 
uncompetitive inhibitor in cases for which [H+]o 
and A@ are both saturating. 

The specific numerical case for which a dual 
isotherm has been demonstrated (Fig. 5) has also 
been examined for response to [H+]~. The results 
are shown in Fig. 9. The major effect of variation of 
[H+]i is noncompetitive inhibition, even at interme- 

Table 4. Complete expansion of  the coefficients [Eq. (3)J for the 
R B -  model: 2x+ negative, saturating and [S]~ = 0 

A 
B 
C 
D 
E 

F 

G 
with 
a kis(k37 + k3i) + kl~k37 
(~ k24(k62 + k68 ) + k68k26 
8 (k37 + k3i)(kl2 + kls) + k37ki3 

N "  k57k210: 
k~2k~6k62[6e + k:la(k62 + k68)1 

o~[k21(k62 + k68) + 6] + klz6(k37 + k31) 
k~zk~6{k57[a(k62 + k26 + k2i) + k62((k21 + kiz)(k3i + k37) 

+ k21kls)] + (k37 + k30(k26k12k57 + klsk21k62)} 
k~2{ksv[a((k21 + k84)(k62 + k6s) + k26(k68 + k84)) + k~4(k6~ 

+ k62)(k21k13 + kl2k3i + k12k37) + k26k12(k37 + k31)(ks4 
+ k~)] + ksak,_i(kt~ + k57)(k37 + k3t)(k6~ + k~_,)} 

+k~6{k570~[k,~8(k6,_ + k2~ + ku + k~_6) + k62k24] + (k;t 
+k37)Ik57k4,(k62(k21 + kp_) + k~2(~:24 + k~)) 
+ k~,_(ksTk2,kl2+ k4gk21kls)] + k62k48kwkzlki3} 

k57[k4~ + k84]{c~[b + k~(k~, + k6~)] + kl~8(ksv + k~I)} 

diate concentrations. For the 0.5 unit pH span ei- 
ther side of the pK~'s of the internal H + sites (i.e., 
either side of the control value of [H+]i = 1), J~ax 
changes by a factor of 1.70, J ~  by 2.10, K~ by 1.22 
and K,~ by the factor 1.18. Larger increases in [H+]i 
result, as predicted, in even more marked effects on 
the Jmax' s. 

B. RB- Model 

1. Algebraic Derivation of a Rate Equation. For 
the case in which charge crosses the membrane on 
the unloaded carrier and A@ is very negative, k87 c a n  

be set to 0 and k78 becomes very large. Table 4 
shows the simplified definitions of the coefficients in 
Eq. (3), given this condition and that of [S]~ = 0. 

2. Numerical Modelling. 

a. Conditions for dual isotherm. The RB- 
model shows dual isotherm kinetics for the same 
simple conditions chosen for the RB + model, 
namely k~6 = k68 = k84 = k48 = 0.1, with all other 
reaction constants set to 1 (Fig. 10). Values of the 
Michaelis parameters are given in the figure legend. 

b. Response to change in [H+]o. Figure 11 
shows the response to change in [H+]o of the Mi- 
chaelis parameters which describe the dual iso- 
therm condition. Qualitatively, the effect of [H+]o is 
similar to that for the RB+ model: ii Jmax p a s s e s  

through a maximum at a pH close to the pKa of the 
binding site and behaves reciprocally with respect 
to [H+]o at higher [H+]o as the product BF tends to 
equality with CE. K~ rises proportionally with 
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Fig. 10. Specific numerical example of dual isotherm for RB-  
model with [S]~ = 0 and At) very negative. Note scale change for 
[S]o > 0.5. Rate constants were all set to unity except k68 = k~6 = 
k84 = k4g = 0. l;  values for the coefficients in Table 4 were then 
calculated and these substituted into Eq. (3). Values of Michaelis 
parameters,  from Eqs.  (11)-(14) (with values from approximate 
definitions in Table 2 in brackets): K~ = 0.337 (0.303), K~ = 3.07 
(3.41), ~ = Jmax = 0.114 (0.108) Jmax 0.053 (0.059), II 
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Fig. 11. Effect of  [H+]o on Michaelis parameters for dual iso- 
therm kinetics: RB-  model. Reference conditions are those of  
Fig. 10, with [H+]o = 1 (~4 = 0.1, k~z = 1.0) and absolute values 
of  rate constants and the Michaelis parameters at [H+]o = 1 as in 
the legend of  Fig. 10. Michaelis parameters calculated for each 
[H+]o after evaluation of the coefficients in Table 4 and substitu- 
tion of the coefficients into Eqs. (11)-(14) 

[H+]o over that range, while JImax and K~m both start 
to saturate. If [H+]o is rate limiting, both Jmax'S tend 
to shown proportionality with [H+]o, while both 
Km's are relatively insensitive. 

" I :S -1:0 "O:,S 

"O.4 
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Fig. 12. Response  of  the isotopic solute flux at saturating [S]o to 
variation in [H+]o for dual isotherm kinetics: RB- model. ~Jmax 
calculated as i Jrnax + J/mlax from Fig. 11. All conditions as in Fig. 10 

The sum of i IL Jmax and ~;Jmax, is plotted in J l l l ax  ~ 

Fig. 12, also as a function of [H+]o. As with the 
RB + model, there is a tendency for EJ~,x to satu- 
rate at [H+]o below that at which Jmax saturates. 
However, there is one important difference be- 
tween the behavior of the two models: ~Jmax iS not a 
Michaelian function of [H+],, in the case of the RB-  
model. This can be confirmed with reference to Ta- 
ble 4. The ratio A B / D E  which defines ~Jmax contains 
in the numerator first- and second-order terms for 
[H§ and zero-, first- and second-order terms exist 
in the denominator. Thus the form of the relation- 
ship is that of Eq. (3), and Michaelis-Menten kinet- 
ics, although possible, do not constitute a unique 
response. 

c. Response  to change in [H+]i. One notewor- 
thy feature of the definitions in Table 4 concerns 
the absence of the reaction constant k75. This con- 
stant is missing because the reaction k78 is very fast 
for the R B -  model at saturating A+ and N7 is effec- 
tively reduced to 0. Each coefficient A through G in 
Table 4 therefore consists of zero- and first-order 
terms for [H+]i, and there are no second-order 
terms. 

The effects of [H+]i on the Michaelis parame- 
ters of the R B -  model in the dual isotherm mode 
contrast strongly with those of the RB + model. 
Given that all the coefficients exhibit first-order de- 
pendence on [H+]i at high [H+]i, it might be ex- 
pected that the Michaelis parameters saturate as 
[H+]/is raised, and this indeed is the case (Fig. 13). 
The effects of [H+]~ are small when compared with 
the R B +  model (note difference in ordinate scales 
in Figs. 9 and 13) because at very negative A~ the 
ability of Hi  to attract more carrier sites to the 
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Fig. 13. Effect of  [H+]i on Michaelis parameters for dual iso- 
therm kinetics: RB-  model. Reference conditions are those of 
Fig. 10, with [H+]~ = 1 (kv5 = k3] = 1.0) and absolute values of 
rate constants and the Michaelis parameters at [H+]~ = 1 as in the 
legend of  Fig. 10. Michaelis parameters calculated for each [H+]~ 
after evaluation of  the coefficients in Table 4 and substitution of  
the coefficients into Eqs. (11)-(14) 

inside of the membrane is restricted in the RB-  
model. For the particular numerical conditions cho- 
sen, the effects of [H+]i are predominantly on the 
Jma~ of the high capacity Michaelean component. 

I I I .  E X P E R I M E N T A L  A P P L I C A T I O N  

One very clear property of random binding schemes 
which explain dual isotherms is that as pH is low- 
ered to levels below the pKa for H + binding, so the 
-/max for the low affinity system will disappear. To a 
large extent, this disappearance is compensated for 
by an increase in Jmax associated with the high affin- 
ity isotherm. As a result, the sum of the Jma• 
should remain relatively constant over a range of 
pH's,  although the relative contributions of the high 
and low affinity components will appear to be pHo- 
dependent. 

There are few data concerning pH effects on 
dual isotherms in plants which permit these predic- 
tions to be examined properly in the light of pre- 
vious experiments. However, one system for which 
a great deal of elegant kinetic information has been 
collected is the H+/sugar transport system of Chlo- 
rella. Komor and Tanner (1975) have shown that 
6-deoxyglucose transport in Chlorella exhibits bi- 
phasic kinetics with respect to external sugar con- 
centration, but that this behavior is marked only 
when external pH is in the region of neutrality (6.9- 
7.2). Below this range (pH 6. I), the kinetic charac- 
teristics are dominated by the high affinity '~sys- 
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Fig. 14. Ability of random binding model to account for dual 
isotherm kinetics of sugar transport in Chlorella. Experimental 
points ( e )  for uptake of  6-deoxyglucose by Chlorella from Ko- 
mor and Tanner (1975), with fits generated by RB + model, sim- 
plified for very negative A~h and [S]i = 0. Values of rate con- 
stants are excactly those used in Figs. 5-7,  i.e., all rate constants 
were set to unity except  k68 = ~6 = ~4 = k48 = 0.1. Thus for the 
four different pHo's,  the respective values of  k84 and k62 are (top 
to bottom in figure): 6.3, 63; 1, I0; 0.5, 5; 0.033, 0.33. [S]o was 
manipulated as k86 and knz. Values for the coefficients in Table 3 
were then calculated and these substituted into Eq. (3) for the 
theoretical fits of  the data. Values of  Michaelis parameters are as 
follows: 

Relative K~ K~ Jlax J~a• 
[H+]o (mM) (raM) 

(mmol h-  i 
ml -I) 

63 0.254 70.84 0.242 0.030 
l0 0.196 17.77 0.151 0.114 
5 0.166 12.68 0.104 0.155 
0.33 0.106 6.09 0.011 0.139 

tern," while above it (pH 8.4), the low affinity 
~'system" dominates. Nevertheless, as the pH is 
raised from 6.1 to 7.2, ZJmax decreases by only 10%. 
At pH 8.4, the decline in ZJmax is more marked (33% 
compared with pH 6. l). 
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The kinetic response to pH of sugar transport in 
Chlorella seems therefore to possess exactly those 
characteristics which are predicted by the random 
binding of H + and sugar to the carrier. Figure 14 
shows conventional "dual isotherm" plots for up- 
take of S at the four relative values of [H+]o used by 
Komor and Tanner. The RB + model used to con- 
struct these plots is the same as that used for Figs. 
5-9, i.e., the only assumptions made are that A~ is 
highly negative, that [S]z = 0 and that k~6 = k6~ = k~4 
= k48 = 0.1, with all other reaction constants = 1. 
The resemblance to the original plots for sugar 
transport in ChlorelIa is striking. The change in 
EJm~x over the pH range 6.1-7.2 is 7%, while at pH 
8.4 it is 45% compared with pH 6.1. The relative 
values of the flux at [S]o = 1 compared with [S]o = 
100 are, for the original data and the model, respec- 
tively: pH 6.1: 0.86, 0.75; pH 6.9: 0.54, 0.52; pH 
7.2: 0.40, 0.41; pH 8.4: 0.17, 0.20. In conclusion, 
then, random binding of sugar and H + provides a 
good explanation of the occurrence of biphasic ki- 
netics for sugar uptake in Chlorella. Further tests 
and experimental applications of random binding 
models are considered in the Discussion. 

Discussion 

I. DISCRIMINATION BETWEEN RANDOM BINDING 
MODELS AND OTHER KINETIC SCHEMES 

A. Slip 

One notion that has been popularly invoked to ex- 
plain biphasic kinetics is "slip," in which the mem- 
brane is assumed to be permeable to the carrier- 
substrate binary complex as well as to the ternary 
(H+-bound) form (e.g. Komor & Tanner, 1975). The 
low affinity "sys tem" is therefore taken to repre- 
sent entry of S unaccompanied by H +, the high af- 
finity "sys tem" being generated by true H+-S co- 
transport. Slip has several attractive features. It 
explains why H+/S stoichiometry (n) appears to de- 
crease at high external pH, and also provides a 
ready explanation for the failure of the transmem- 
brane electrochemical gradient of cotransported 
substrate to come to equilibrium with the protonmo- 
tire force, despite the existence of a steady state 
(Eddy, 1980). 

Nevertheless, there are several objections to 
the generality of slip models as an explanation for 
these observations, as well as for biphasic kinetics. 
First, as alluded to in the Introduction, biphasic ki- 
netics have been observed even in cases where the 
low affinity system generates net solute transport 
against the prevailing electrochemical gradient of S 
(Sanders, 1984). Second, as we have already shown 
(Sanders et al., 1984), transinhibition can generate a 
quasi-steady state far from the region of equilibrium 
between electrochemical gradients of S and H + : the 

effect can occur in transport systems not exhibiting 
slip. 

How, then, might the apparent decline in H-/S 
stoichiometry at high external pH be accounted for 
in terms of the random binding model, which envis- 
ages a fixed value ofn for the system? The origins of 
the experimental observation could well reside in 
the increased ability at high external pH of the pri- 
mary H + efflux pump to compensate for cotrans- 
port-associated H + entry. This argument is 
strongly supported by work on H+/glucose cotrans- 
port in Neurospora. There, ~4C-sugar uptake and 
current (proportional to H + flux) through the co- 
transport system are relatively unaffected over an 
external pH range in which cotransport-associated 
H + entry (as measured with an external pH elec- 
trode) is strongly pHo-dependent (D. Sanders, K.E. 
Allen & C.L. Slayman, in preparation). In other 
systems, too, it is well known that unless primary 
H + pumping is inhibited, cotransport-associated H 
uptake is difficult to detect (e.g. West & Mitchell, 
1973). 

These observations highlight a fundamental 
area in which slip models for solute entry can be 
discriminated from random binding models. Slip re- 
quires for neutral solutes that cotransport-depen- 
dent membrane current falls in parallel with appar- 
ent net H + flux through the transport system as pHo 
rises, with an increased proportion of solute flux 
occurring independently of membrane current 
changes at high pHo or high [S]o. In contrast, ran- 
dom binding predicts that even in the range of low 
affinity uptake (high pHo, high IS]o), a stoichio- 
metric ratio is maintained between net S entry and 
S-dependent membrane current (although net H + 
influx may well decline as primary H + efflux pump- 
ing increases). 

B. Ordered Binding 

The present work is an extension of our previous 
kinetic analysis of ordered binding models (Sanders 
et al., 1984). Which class of model represents a suit- 
able starting point for analysis of typical cotrans- 
port kinetic data? Biphasic kinetic data will clearly 
fall outside the realm of description by ordered 
binding models, since ordered binding always gen- 
erates monophasic Michaelis-Menten kinetics for 
uptake of isotopic S, irrespective of any other ki- 
netic characteristics of the carrier. In many cases, 
however, transport can be described as monophasic 
over a range of conditions, and analysis should 
therefore begin by application of the model which 
involves fewest assumptions. The criteria for 
"fewest assumptions" is to a certain extent a mat- 
ter of personal preference. Ordered binding mode~s 
begin with the constraint that steric attributes of the 
carrier can prevent random addition of ligands, but 
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the resulting rate equations are relatively simple. 
While random binding models certainly do not in- 
clude this steric constraint, their greater topological 
complexity results in an inherent ability to describe 
a wider variety of kinetic data. Thus, it might be 
argued that if data are reasonably well described by 
ordered binding models, there is no justification for 
extension of the analysis to systems involving yet 
more carrier states. However, it should be borne 
in mind that ordered binding systems are merely 
sub-classes of more generalized random binding 
schemes. 

C. Substrate Effects on Membrane Potential 

In most cases of cotransport, the reversal potential 
of the system is sufficiently far removed from the 
resting membrane potential to render the solute flux 
insensitive to changes in AqJ. Nevertheless, it is 
clear that where [S],, itself substantially affects At0, 
the possibility of a significant influence of A+ on the 
kinetics of transport should be taken into account. 
Gerson and Poole (1971) have modelled dual iso- 
therms for anion transport in plants according to the 
effects of anion concentration on a Goldman diffu- 
sion regime. Similarly, the involvement of At~ ap- 
pears to be a likely determinant of the effects of 
external pH on K + influx in plants (el. Fried & Nog- 
gle, 1958). 

D. More than One Transport System 

An alternative explanation for biphasic kinetics is to 
suppose that separate carrier systems are responsi- 
ble for each phase. For sugar transport in Chlorella, 
this explanation appears unlikely because the two 
kinetic phases appear to behave interdependently 
as pHo is varied. Similarly, van Bel et al. (1982) 
have presented evidence, based on the parallel re- 
sponse of the two phases to a range of treatments, 
that biphasic uptake of valine in Commelina is me- 
diated by a single carrier system. Neurospora, 
though, displays high affinity glucose uptake only 
after starvation of glucose, the low affinity system 
being constitutive (Schneider & Wiley, 1971). Fur- 
thermore, only high affinity uptake carries electrical 
current (Slayman & Slayman, 1974), which is 
strongly suggestive of separate system. 

Kinetic analysis with random binding models 
can give clues to the presence of more than one 
transport system if, for example, there is failure to 
observe monophasic kinetics at saturating [H+]o. 
Cis-(substrate) inhibition kinetics, on the other 
hand, are diagnostic of a single system (Borst- 
Pauwels, 1973; Fig. 4). Ideally, genetic and/or re- 
constitution techniques should be employed in indi- 
vidual cases to generate a more definitive answer to 
the question of multiple systems. 

II. DETERMINATION OF REACTION CONSTANTS 

Ordinarily, for studies on intact cells, there will be 
insufficient data to permit evaluation of all rate con- 
stants in a random binding carrier scheme. How- 
ever, estimates can still be obtained for those rate 
constants involving binding of ligands externally. 
The method is to subsume all inaccessible rate con- 
stants into a single gross reaction constant (e.g. 
from state 1 to state 8 in Fig. 1). It has then to be 
recognized that all rate constants derived from 
curve fits based on such a model implicitly contain 
reserve factors which have the capacity to change 
both the absolute and the relative values of the ex- 
perimentally-derived rate constants (Hansen et al., 
1981). 

Certain systems (internally perfused cells and 
membrane vesicles) also facilitate experimental 
control of medium composition on both sides of the 
membrane, and this should extend the range of ac- 
cessible rate constants. Since the full model con- 
tains no fewer than 10 pairs of reaction constants, 
the range of experimental conditions investigated 
has to be large. Ideally, the concentration of each 
ligand should be varied at a series of fixed concen- 
trations of the other ligands in otherwise constant 
conditions. 

The final assignment of rate constants in the 
above cases will normally be obtained from curve- 
fitting in which certain key reaction constants are 
permitted to vary with ligand concentration, the re- 
mainder being held constant. There are, however, 
implicit uncertainities in the method, since the confi- 
dence limits for each rate constant, particularly as a 
function of each of the other rate constants, is not 
easy to determine. Judicious choice of conditions 
may nevertheless permit the experimenter to deter- 
mine certain rate constants more unambiguously. 
For example, Eqs. (30) and (31) show that for the 
RB + model with [S]i = 0 and AqJ very negative, the 
ratio Jstim/Kstim simplifies to Nk~2. A similar relation- 
ship has been pointed out by us previously [Eq. (20) 
in Sanders et al., 1984)]. 

I I I .  SITE OF CHARGE TRANSLOCATION 

Figures 9 and 13 display a marked contrast in the 
effects of [H+]s on the Jmax's for solute transport. 
For [S]i = 0 and Aqs very negative, the RB § model 
predicts both Jmax'S fall eventually to zero as [H+]i is 
raised, There are relatively small effects on the 
Km's (noncompetitive inhibition). In identical con- 
ditions, the RB- model predicts a decline in both 
Jma• to stable values at high [H+]i. This conclusion 
is a general one, and not restricted to the particular 
rate constants chosen for the modelling in Figs. 9 
and 13: the expression AB/DE (=~Jmax) exhibits re- 
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ciprocal dependence on [H+]i for the RB + model at 
high [H+]i (Table 3) but is independent of [H+]/for 
the RB- model (Table 4). Thus, provided there is 
experimental access to the inner compartment, 
there is a ready basis for determination of the site of 
charge translocation from isotope studies. 

IV. EXTENSION OF RANDOM BINDING MODELS 

A. Stoichiometric Ratio Greater than 1 

It has been assumed throughout the present treat- 
ment that the H+/S stoichiometry (n) = 1. While a 
stoichiometry of =<1 is almost certainly valid for 
some systems (including the lactose/H + symporter 
ofE. coli: Wright & Overath, 1984), there are many 
clear-cut examples in the literature of cases in 
which n > 1 (Sanders, 1984). This is particularly 
true of some anion uptake systems, which generate 
inward currents even in the case of divalent ions 
such as SO ]- for which n => 3 (Lass & Ullrich- 
Eberius, 1984). If all H § binding sites are taken as 
identical, then there exist n + 1 possible random 
binding sequences at each membrane surface and, 
by implication, n + 1 different apparent Km's. SO ]- 
uptake in barley can be described as the sum of 
three separate kinetic "phases":  two Michaelean 
and one linear (Borstlap, 1981). These kinetics 
might therefore easily be accommodated by a ran- 
dom binding model for 3H+/SO42- cotransport (al- 
though noncarrier-mediated diffusion is not ruled 
out for the linear phase). 

B. Counter Transport 

The present model is as equally applicable to 
counter-transport as to cotransport systems. There 
are several examples of counter transport in the 
membranes of energy-transducing organelles (e.g. 
Fliigge, Gerber & Heldt, 1983) and other endomem- 
branes (e.g. Thom& Komor, 1984). To modify the 
model it is merely necessary to stipulate that release 
of effluxed solute can occur either before or after 
binding of the solute to be influxed. 

V.  GENERAL CONCLUSIONS 

Random binding schemes for cotransport are capa- 
ble of describing biphasic kinetics for solute flux, 
including a commonly observed phenomenon in 
plant tissues in which a high Km is associated with a 
high value of Jm,x, and a low Km is associated with a 
lower value of Jm~x. Despite the complexity of the 
underlying rate equation which describe uptake of 
isotopic solute by a random-binding carrier, several 
clear, testable, predictions emerge: 

(i) The kinetics of S uptake should become mono- 
phasic as [H+]o is raised to saturating levels. In 
cases where the initial kinetics are clearly biphasic 

K~ (J~ax > Jmax, >> K}n), the net effect of raising 
[H+]o to a saturating value is a progressive decrease 
in Jlmlax and a progressive increase in K~. 
(ii) At saturating [H+]o, increase in [S]i should exert 
uncompetitive inhibition on the influx of S. 
(iii) The model predicts proportionality between 
[SL and membrane current for all [S],,, whereas slip 
and leak models for biphasic kinetics predict a grad- 
ually increasing ratio between Js and current as [S],, 
rises. 
(iv) The form of carrier which translocates charge 
can be determined from steady-state kinetic data at 
negative saturation of Ark and [S]i = 0. For the case 
in which positive charge is translocated on the 
loaded form of the carrier YJmax should show recip- 
rocal decline with [H+]i, whereas for negative 
charge translocation on the unloaded carrier, ZJmax 
becomes independent of [H+]~, even at very high 
[H+]i. 

I am indebted to Dr. Rob Brooker for persuading me that analy- 
sis of random binding models would be a fruitful exercise, and to 
Marcelle Sanders for pointing out some of the fundamental alge- 
braic relationships. Thanks are also due to Mick Hopgood for 
drawing the figures. Financial support was provided by the Agri- 
cultural and Food Research Council (U.K.). 
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Appendix  I 

D. Sanders: Random Binding and Cotransport 

Derivation of the Complete Rate Equation for 
Isotopic Flux through a Random Binding 
Cotransport System 

The generalized random binding carrier is shown in Fig. 15A. 
The derivation of the rate equation to express movement of iso- 
topically labeled solute (*S) from the outside to the inside begins 
by assuming that [*S], = 0. (Unlabeled S may nevertheless be 
present inside.) The flux of labeled solute, *Js ,  is then given as 

*'Is = *N[kl5 + *N3k37 (A1) 

in which *Nj is the concentration of isotopically labeled carrier 
state j. 

The proportion of carrier states 1 and 3 that is isotopically 
labeled is not immediately known. For purposes of calculation of 
isotopic flux it is therefore easier to express Eq. (A1) in terms of 
carrier states not bound to isotope, i.e., the carrier states 4 and 8 
to which *S binds. The following rate equations are therefore 
solved for N4 and Ns: 

d'N3 
= 0 = *Nlk~3 - *N3(k37 + k30 (A2) dt 

d * N  1 
- 0 = *N2k21 + *N3k31 - -  *Nl(kl, + k13 -b k15 ) (A3) dt  

d ' N 2  
d t  = 0 = *Nlk l2  + Nak42 + *N6k62 

- *N2(k2i + k24 + k26) (A4) 

d * N  6 
-- 0 = *N2k26 + Nsk86 - *N6(k62 + k68). (A5) d t  

Equations (A2) through (A5) explicitly recognize that the carrier 
state distribution will be in a steady state during measurement of 
isotopic flux. Substitution of these equations into Eq. (AI) leads 
to 

S,,k2[a[N4k~2(k62 + k68) + Nsk~k621 

J" = a[(k~2 + k68)(k21 + k24) + k68k2~] (A6) 
+ k]2{(k37 + k~O[k,_4(k6,_ + k ~ )  + k~sk~]} 

Out 6 - -  _4 3 _ 5  in / ~ /  
H k / S  H ~ I / S  / ~  ~_~ 

2, , 2 

(v+ 5-+ dv v , 

3 4 

Fig. 15. (A) Generalized diagram 
for random-binding cotransport 
system, based on Fig. 1. (B) 
King & Altman diagrams for the 
reaction scheme in A. For 
explanation, s e e  text 
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with 

o~ = k]s(k37 + k31 ) + ki3k~7 /A7) 

and S,,, the concentration of solute externally. (The * notation 
has been dropped, since all external solute is labeled at known 
specific activity.I 

It simply remains, then, to express the concentration of the 
carrier states N4 and N8 in terms of the rate constants of the 
carrier cycle. This is accomplished by the King & Altman 
method (King & Altman, 1956; see also Plowman, 1972; Segel, 
1975). Figure 15B shows the 64 King & Altman diagrams for the 
reaction scheme in Fig. 15A. Each diagram can be related to any 
of the eight states as the product of the seven rate constants 
directed towards that state. The carrier-state concentration or 
density, Nj, can then be expressed as a proportion of the total 
carrier concentration, N, by the ratio of the 64 King & Altman 
diagrams relating to state j and the 512 diagrams describing all 
eight states. We can express this as 

N ~ _  64KAj 
N 512KAr" (A8) 

For the purposes of an initial rate measurement, N can be taken I 
as constant, and for the numerical analysis in this paper, N is set 2 
to unity. 3 

Table AI gives the numbers of King & Altman diagrams 4 
subsuming So-dependent terms for each of the eight states. Thus, 5 
extracting k42 and k86 from the King & Altman terms and denoting 6 
the residual expression as KAy (six rate constants left in each 7 
diagram after extraction of k42 or ks0 or K A y  (five rate constants 8 
left after extraction of k4z and k86) 

S,,k,_loe[Sk'4'~_k~d 12KAj(k~,,_ + k6s) + 20KA'~k6z) 
+ 52KA4k'~2(k,,2 + k6~) + 44KAsk~e,k<] 

J~. = N DENJS~,II2KA?'k'~,k'~'~) + S,,tI72KA!~k~,_ (A91 

+ 76KA~-k~,) + 2t2KA7] 

where DEN is the denominator of Eq. (A6). 
Equation (A9) can therefore be written as Eq. (3), with the 

identify of the coefficients in Table 1 defined by straightforward 
term-by-term comparison. 

Equation (A9) can also, of course, be rewritten to make 
explicit terms for any of the other three ligands: HS, S~ and H,.  
However, our practice in the rest of the paper has been to iden- 
tify the presence of ligand binding terms in each of the So-depen- 
dent coefficients in Eq. (A9). 

Table A1. Distribution of King & Altman terms subsuming [S]o 
among expressions for carrier states 

Carrier state Number of terms subsuming 

2 o o S o k42ks6 So k~2 So k~6 

8 28 8 
12 32 12 
6 26 6 
0 0 12 
6 26 6 

16 16 28 
4 24 4 
0 20 0 

Appendix II 

Table A2a. Expansion of King &Altman terms for the condition of saturating [H+Jo 

From Eq. (22) (B) From Eq. (23) (C) From Eq. (27) (G) 
12KA~ ~ 16KAy" 16KAefl 

State Column Row State Column Row State Column Row 

k24kisk57k37k78 4 1 1 4 4 1 
+ k24k13ksvk37kvs 2 2 
+ k~4kp_k57k37k78 3 3 
+ k24k12k31k57kv8 4 4 
+ k24k3tktsk57k78 5 5 
+k24k~2k31k51k7e 6 6 
+ k24kstki3k37kT~ 7 7 
+ k24k~lk37kTsku 8 8 
+ k24k57k73k3ikn 9 9 
+k24kvskslk31kt2 10 10 
+ kz4k73k31kslk12 11 11 
+ k24k12ksl k37kTs 12 12 

Extracted: [H+]o~2, [S]ok~6 [H+]ok~z, [H+]ok~4 
4KA~ ~ 

+k2tk13k37ksTkT~ 8 2 13 4 3 13 4 3 
+k21klsk37k57kn 14 14 
+ k21kslk13k37k78 15 15 
+k2tk3tki&57k78 16 16 

Extracted: [H+]ok~2, [S]ok~2 [H+]ok~2, [H*]ok~4 [H+]ok~2, [H+]ok~4 

4 4 

[H+]ok~2, [H+ ]ok~4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 
15 
16 
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Table  A2b. Expansion o f  King & Altman terms for the condition of  saturating Ill+l,, 

From Eq. (25) (E) From Eq. (26) (F) 
36KA7"'  36KA~;~'" 

State Column Row State Column Row 

k2ik37k57k78 1 1 
+ k2 lk3 iksvkTe, 
+k21k3tkstk7s 
+ k-,lk37k75k5 i 
+ k21k57k73k31 
+k21kTsk~tk3t 
+k21k73k51k3t 
+ k2iks~k37k78 
+ klsk57k37k78 2 1 
+ k13k57k37k78 
+k12k57k37kv8 
+k12k31k57kTs 
+ k31kisk57k78 
+ k12k3tk51k78 
+ kslk13ka7k78 
+ kslk37k75k12 
+ k57k73kalk12 
+ k75ksikslki2 
+ k73k3tks~k12 
+ k12ksIk37k78 
+k57k7gk2~kI3 3 1 
+k78kzlkslk13 
+ k21klsksvk73 
+ k21k13k57k73 
+ k21k13k75kst 
+ k21k13kslk73 
+ k78kzlk31k15 5 1 
+ k21klsk37k75 
+ k21kt3k37k75 
+ kz~k3~kisk75 
+ k21kvsk31k15 
+ k37k78k21k15 
+ k21klsk57k37 7 1 
+ k2iki3k37k57 
+ k2dc31k~sk57 
+ k21kslk13k37 

Extracted:  [H+],,k~2, [S],,k~, [Sl,,k~2; 

3 I 4 3 
4 4 
6 6 
8 8 
9 9 

l0 l0 
11 II 
12 12 

I 2 4 I 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 

10 10 
11 11 
12 12 
4 3 4 4 
6 6 
8 8 
9 9 

10 10 
11 11 
6 5 4 6 
8 8 
9 9 

10 t0 
11 II 
12 12 
8 7 4 8 
9 9 

10 10 
11 11 

[H+],,kg,, [H§ [Sl,,k'~, 

Expansion of King & Altman Terms for the 
Condition of Saturating [H+]o 

The complete  expans ion  of  the King & Al tman terms in Eqs. 
(22), (23) and (25)-(27) is given in Tables A2a and A2b in such a 

way as to show the fundamental  similarities between the coeffi- 
cients B, C and G, on one hand,  and E and F,  on the other. The 
numbers  to the right of  the table are to enable easy  identification 
of  the appropriate King & Altman diagrams from Fig. 15. The 
" ex t r ac t ed"  terms appear  in the original equations.  
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Appendix III 

87 

Derivation of Equations for the Simplified Models, 
with [S]i = 0 and AO Very Negative 

Table A3, column 1, shows  for each of  the carrier states the 
number  of  King & Altman terms remaining (from the original 

total of  64: Fig. 15B) after imposing the simplifying condition of  
[S]i - 0. Columns  2 and 3 show respect ively for the RB + and 
RB models  the number  of  terms present  after the additional 
restriction of  very negative Aqs is imposed.  The King & Altman 
terms appear  explicitly in the coefficient definitions in Tables 3 
and 4. 

Table A3. Distr ibution of  King & A l t m a n  terms among carrier states after simplification of random 
binding model  

Carrier state N u m b e r  of  terms remaining with 

k73 = ks1 = 0 k73  = ksi = ki2 = 0 and k21 large k73 = k ~ l  = k87  = 0 and kv~ large 

1 8 8 8 
2 20 0 20 
3 4 4 4 
4 26 6 26 
5 52 32 8 
6 26 6 26 
7 44 24 0 
8 32 12 32 


